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1 Introduction

Linear Algebra for many will be a new mathematical language to learn. It is
beautiful but it is not intuitive at first. This sheet is meant to highlight the
concepts that I struggled with during my first course in Linear Algebra in hopes
of explaining them in a way that my previous self would have greatly benefited
from. Many of these are from my notes that I took in Math 355 at UWW.

2 Terms, Definitions, Key Introductory Concepts

• Linear Equation: An equation where the highest power of a variable is 1.
Geometrically they represent lines, planes, and hyperplanes.

• Linear System: A finite collection of Linear Equations. A solution to a
linear system is a solution to all of the equations in the system.

• Affine Function: A function f : Km → Kn if there exists a vector b̄ ∈ Kn

and a matrix A ∈ Km×n such that: ∀x̄ ∈ Km, f(x̄) = Ax̄+ b̄

• Vector: A quantity that must be expressed by more than one scalar.

• Matrix: A matrix is an array of a specific m×n size that contains indices
related to the field in which it is contained.

• Linear Combination: An expression constructed from a set of terms by
multiplying each term by a constant and adding the results.

• Consistent: A system has a solution

• Inconsistent: A system does not have a solution.

Concepts

• There are only 3 possible cases when it comes to solutions of linear sys-
tems. 0 solutions (all of the linear equations form parallel lines), 1 solution
(All equations intersect at a point), and infinite solutions (The equations
intersect at a line/hyperplane).
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Parametric Form

Suppose we have the REF augmented matrix:

1 2 0 3
0 0 1 2
0 0 0 0

 Let us

rewrite this matrix in terms of its variables.

x+ 2y = 3
y = y
z = 2

 We see that x is a

function of the free variable y. We can rewrite this in parametric form:x
y
z

 =

3− 2y
y
2

 =

3
0
2

+ y

−2
1
0


3 Invertible Matrix Theorem

For an n× n matrix A, the following are equivalent:

1. A is invertible.

2. det(A) ̸= 0

3. rank(A) = n

4. Ax = b has a unique solution ∀b ∈ Rn.

5. Ax = 0 has only the trivial solution x = 0.

6. The columns of A are linearly independent.

7. The rows of A are linearly independent.

8. The columns of A span Rn: The column space of A is Rn.

9. The rows of A span Rn: The row space of A is Rn.

10. A is row-equivalent to the identity matrix In: You can row reduce A → In.

11. The eigenvalues of A are all nonzero.

12. The matrix AT is invertible.

13. The null space of A is trivial: Null(A) = {0}.

14. The matrix A has full column rank and full row rank.

3.1 Additional Information

Assume A and B are invertible n× n matrices for the following.

• A product of an invertible matrix is invertible.

• (AB)−1AB = In

• (AB)−1ABB−1 = B−1
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4 Determinant

The Determinant is a single number that tells us if A is invertible. If det(A) ̸= 0,
A is invertible, and thus has a solution. Given a matrix A, its determinant is
the signed n volume of the parallelepiped spanned by its columns.

Let A be a 2× 2 matrix

[
a c
b d

]
, det[A] = ad− bc

The determinant tells us something about the linear transformation that the
matrix represents.

• det(A) > 0 tells us that the matrix scales the area formed by the vectors
by some factor equal to det(A).

• det(A) = 0 tells us the transformation takes a vector into a lower dimen-
sion.

• If det(A) < 0 The transformation is a sort of reflection.

There are some other important qualities of a determinant:

• Swapping two rows or columns changes the sign of the determinant.

• Multiplying an individual row or column by some scalar λ means λ det(A)

• Adding rows or columns to each other has no effect on the determinant.

5 Vector Spaces

A vector space is a set whose elements (vectors) can be added together, and
multiplied by scalars, and the vector space must contain the 0̄ vector.
S is a subspace of Kn; a collection of vectors spans S if span(v1, v2, v3...vk) = S.
This is called the spanning set. A collection of vectors is a spanning set for S if
given and vector w ∈ S : c1v1 + ...ckvk = w has at least one solution.

Definition: Basis, a collection of linearly independent vectors that span a
vector space.

Given a subspace of S, a basis for S is a collection of vectors that:

• Spans S (There is a linear combination that can hit every point in S)

• Linearly Independent (No vectors in the spanning set of vectors that are
linear combinations of other vectors in the spanning set)

A subspace of S must satisfy: ū, v̄ ∈ S

• ū+ v̄ ∈ S

• 0̄ ∈ S
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• λv̄ ∈ S

Every vector space has a basis and all the bases of a vector space have the
same size. The dimension of the basis defines the size of a vector space. The
dimension is simply the number of vectors in the basis.

Vectors {v1, v2, v3...vn} are linearly independent iff c1v1 + c2v2 + c3v3 + ..+
cnvn = 0 has only the trivial solution of c1 = c2 = c3 = 0.

5.1 P Vector Spaces

We denote the vector space of all n-degree polynomials or less as Pn.

Pn = {p(x)|p(x) =
n∑

k=0

akx
k, ak ∈ R/C}

A basis for P is the set of monomials

{1, x, x2, ..., xn}

. Any polynomial can be described as a unique combination of these elements.
Note that the dimension of Pn is n+ 1 since the indexing starts at 0.

Since we can add polynomials and multiply them by scalars and never leave
the vector space, it is closed under vector addition and scalar multiplication. A
subset of P must also be closed under these conditions such that it never leaves
that subset.

A vector v̄ ∈ Pn =



a0
a1
a2
.
.
.
an


where ai is the coefficient of xi.

6 Linear Transformations

A linear transformation between two vector spaces is a function T that satisfies:

• T (v̄ + w̄) = T (v̄) + T (w̄)

• T (λv̄) = λT (v̄)

• λ = 0 → T (0̄) = 0̄

Theorem: A function from a finite-dimensional vector space V to a finite-
dimensional space W is a linear transformation iff there is a matrix such that
T (x̄) = Ax̄. A is called the standard matrix for [T ]. Its columns represent
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what happens to the standard basis vectors. The i column of A represents the
transformation T (ei).

Let A be an m×n matrix representing a linear transformation T : Rn → Rm.

• Range of A is the subspace of Rm spanned by the vectors of the form Ax,
where x ∈ Rn.

• The null space (kernel) of A is the subspace of Rn consisting of all the
vectors x satisfying Ax = 0.

Steps to Find the Range:
Suppose we have an invertible matrix A2×2,[

a b
c d

]
The range ofA is the span of its columns with pivots in REF. SinceA is invertible

it follows that A has pivots in every column, we write span{
[
a
c

]
,

[
b
d

]
}

To find the null space, place the matrix into RREF, and express the pivots
in terms of the free variables. These vectors form the null space. Since our
matrix A is invertible, it only contains the trivial solution {0}.

rank(A) = dim(Range(A)) & nullity(A) = dim(Null(A))

In other words, rank is the number of pivots in REF. Nullity is the number of
free variables in REF.

Let us work through an example:
Let T → R3 → R2 given by:

T (

xy
z

) = [
x+ y
y + z

]
Let us write out this matrix in terms of its linear equations

• 1x+ 1y + 0z

• 0x+ 1y + 1z

We can put the coefficients into a matrix like so:[
1 1 0
0 1 1

]
Our first step is to get T in REF; in this case, we can see that there are pivots
in the first and second columns and thus we can determine the range of T is the
span of those columns.

span(

[
1
0

] [
1
1

]
)
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To solve for the kernel (null) we solve using the equation:

Ax̄ = 0̄

Keeping in mind that x ∈ Rn and 0̄ ∈ Rm so in this case, x ∈ R3 and 0 ∈ R2

Or to put it simply, since we have a transformation from R3 → R2 we will
write, [

1 1 0
0 1 1

]xy
z

 =

[
0
0

]
Row reducing the augmented matrix into RREF gives us[

1 0 −1 | 0
0 1 1 | 0

]
Now we can write our pivot variables in terms of their free variables

• x1 − x3 = 0

• x2 + x3 = 0

• x3 is free so we write x3 = x3

Which, of course, simplifies to:

• x1 = x3

• x2 = −x3

• x3 = x3

Thus, our solution is:

x =

 1
−1
1


And so, the null space of our matrix is:

Null(A) = span

 1
−1
1


Fundamental Theorem of Linear Algebra

rank + nullity = number of columns.
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7 Linearly Independent Sets - Bases

Consider the elementary vectors of R2, e1 and e2. The span of these vectors can
be written as:

span(

[
1
0

]
,

[
0
1

]
)

To determine if a set of vectors spans a vector space, we check if the spanning
set is invertible by row reducing and checking if the pivots match the dimension,
or by taking the determinant. If it is invertible, and the dimension of the
spanning set is the same as the dimension of the vector space.

Let’s say: B = {b1b2}, where b1 =

[
1
1

]
and b2 =

[
2
−1

]
Thus, the B-basis matrix is B =

[
1 2
1 −1

]
. We also have a vector in standard

coordinates that we wish to express with respect to our basis B, v =

[
3
1

]
. We

must solve
Bc = v

Where again, B is the matrix with our basis vectors as columns and c =

[
c1
c2

]
is the coordinate vector in B basis. So in order to find c,[

1 2
1 −1

] [
c1
c2

]
=

[
3
1

]
We can solve this in several ways. We can row reduce or simply find the inverse
of B since:

c = B−1v

In solving by finding the inverse we see,

c = B−1v =

[
1
3

2
3

1
3 − 1

3

] [
3
1

]
=

[
5
3
2
3

]

So, our vector v, in base B, is

[
5
3
2
3

]
.

Standard Basis → B-Basis

vB = B−1vstd

B-Basis → Standard Basis

vstd = BvB

B-Basis → C-Basis
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To express a vector vB in the C-Basis, convert vB to the standard basis:

vstd = BvB

Then convert v from the standard basis to the C-Basis.

vC = C−1vstd

So the combined formula is:

vC = C−1BvB

Change of Basis Matrix for B → C

PB→C = C−1B

vC = PB→CvB

Let us do another example as this can be quite challenging:
Suppose we have the vectors v1 and v2 such that

v1 =

[
1
2

]
, v2 =

[
3
3

]
These vectors form a basis which we call δ. If we take the vectors of δ and form
a column matrix, which we will call ∆, we get an essential matrix:

∆ = [v1, v2] =

[
1 3
2 3

]
This matrix converts (through matrix multiplication) any vector written with
respect to δ, into the standard basis coordinates, which as a reminder is:

Estd = [e1, e2] =

[
1 0
0 1

]
This comes from the formula mentioned earlier:

ustd = ∆uδ

Where:

• uδ is the vector of coordinates in the δ basis

• ustd is the vector expressed in the standard basis.

What if you want to convert a vector from ustd to uδ? Our goal should be to
look at the previous equation and try to isolate our uδ. We can do this by taking
the inverse of both sides,

∆−1ustd = ∆−1∆uδ

Remember that ∆−1∆ = In thus,

∆−1ustd = uδ
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8 Eigenvalues, Eigenvectors, and Diagonality

We want to find when a matrix is diagonal up to a change of basis.
Let A be an n × n matrix and v̄ is a nonzero vector and λ is a scalar. We

say λ is an eigenvalue of A and v̄ is an eigenvector corresponding to λ if:

Av̄ = λv̄

Steps to find Eigenvalues, Eigenvectors, and Diagonalize:
First start by taking the det[A− λIn], this yields what is called the charac-

teristic polynomial. Find the solutions to this polynomial. These solutions are
the eigenvalues.

We can find the eigenvectors by looking at the null space. We do this by
solving (A − λIn)v̄ = 0̄ for each eigenvector. This tells us that the eigenspace
with respect to λ is Eλ(A) = Null(A− λIn).

The diagonalization of a matrix is simply the eigenvalues along the diagonal,

for a 2× 2 matrix A this will look like

[
λ1 0
0 λ2.

]
Multiplicities

The algebraic multiplicity of an eigenvalue λ is the multiplicity of it as a root
of the characteristic polynomial.

The geometric multiplicity is the dimension of the eigenspace.
1 ≤ Geometric Multiplicity ≤ Algebraic Multiplicity

It may be useful when solving the characteristic polynomial to use the rational
roots theorem. The rational root theorem tells us that if the leading coefficient
an and trailing coefficient a0 of a polynomial are nonzero integers, then we can
solve for the roots by checking the positive and negative factors of a0 and an.

8.1 Diagonalization

A matrix is only diagonalizable iff all geometric multiplicities are equal to their
algebraic multiplicities. A square matrix A is diagonalizable if it can be ex-
pressed as:

A = PDP−1

Where P is a matrix whose columns are the eigenvectors of A, and D, is a
diagonal matrix whose entries are the eigenvalues of A. We can use this formula
to find D as well,

P−1AP = D

9 Important Matrices and Vectors

9.1 Transformations

Rotation Matrix (CCW)[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
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9.2 Other1 0 0
0 1 0
0 0 1


+ − +
− + −
+ − +


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