Series

Ian Cooper

December 2024

1 Types of Series

1.1 Geometric Series

 $\sum_{n=1}^{\infty} ar^n \text{ Converges if } |r| < 1$ If it converges, you can find the sum by $\frac{a}{1-r}$ Here r is the common ratio and a is the first term. You can find the common ratio by $\frac{a_{n+1}}{a_n}$

1.2 P-Series

 $\sum_{\substack{n=1\\ \text{Converges if } p>1, \text{ diverges if } p\leq 1}^{\infty}$

1.3 Telescoping Series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

1.4 Harmonic Series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

1.5 Alternating Series

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

2 Tests for Convergence

2.1 Integral Test

if $f(n) = a_n$, is positive, continuous, and decreasing, we can integrate with an improper integral. If the integral diverges, the series diverges.

2.2 Comparison Test

If $0 \le a_n \le b_n$ - if b_n converges, then a_n converges. - if b_n diverges, then a_n diverges

2.3 Limit Comparison Test

 $\lim_{x\to+\infty}\frac{a_n}{b_n}=C$ Where C is a finite number and positive, then both series converge or diverge.

2.4 Alternating Series Test

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$

If series:
a. $b_{n+1} \leq b_n, \forall n$
b. $\lim_{n \to +\infty} b_n = 0$
Then the series converges.

2.5 The Test for Divergence

If $\lim_{n \to +\infty} a_n \neq 0$ then series a_n is divergence.

2.6 Root Test

$$\begin{split} &\lim_{n\to+\infty}\sqrt[n]{a}\\ &L>1\text{: Divergent}\\ &L<1\text{: Absolutely Convergent }L=1\text{: Inconclusive} \end{split}$$

2.7 Ratio Test

$$\begin{split} \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} &\neq L \\ L > 1 : \text{Divergent} \\ L < 1 : \text{Absolutely Convergent} \\ L = 1 : \text{Inconclusive} \end{split}$$